Photon emission from a driven single-molecule source: a renormalization group approach.
نویسندگان
چکیده
The photon emission from a single molecule driven simultaneously by a laser and a slow electric radio frequency (rf) field is studied. We use a non-Hermitian Hamiltonian approach which accounts for the radiative decay of a two-level system modeling the single-molecule source. We apply the renormalization group method for differential equations to obtain long time solution of the corresponding Schrodinger equation, which allows us to calculate the average waiting time for the first photon emission. Then, we analyze the conditions for suppression and enhancement of photon emission in this dissipative two-level system. In particular we derive a transcendental equation, which yields the nontrivial rf field control parameters, for which enhancement and suppression of photon emission occurs. For finite values of radiative decay rate an abrupt transition to the state when both situations are indistinguishable is found for certain values of the rf field parameters. Our results are shown to be in agreement with the available experiments [Ch. Brunel et al., Phys. Rev. Lett. 81, 2679 (1998)].
منابع مشابه
Monte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography
Introduction SPECT projections are contaminated by scatter radiation, resulting in reduced image contrast and quantitative errors. Backscatter constitutes a major part of the scatter contamination in lower energy windows. The current study is an evaluation of the effect of backscatter material on FWHM and image quality investigated by Monte Carlo simulation. Materials and Methods SIMIND program...
متن کاملTheory for wavelength-resolved photon emission statistics in single-molecule fluorescence spectroscopy.
We derive the moment generating function for photon emissions from a single molecule driven by laser excitation. The frequencies of the fluoresced photons are explicitly considered. Calculations are performed for the case of a two-level dye molecule, showing that measured photon statistics will display a strong and nonintuitive dependence on detector bandwidth. Moreover, it is demonstrated that...
متن کاملTriggered Source of Single Photons based on Controlled Single Molecule Fluorescence
We use the method of adiabatic following to prepare a single molecule in its fluorescing excited state. Spontaneous emission from this state gives rise to a single photon. With our current experimental conditions, up to 74% of the sweeps lead to the emission of a single photon. Since the adiabatic passage is done on command, the molecule performs as a high rate source of triggered photons. The ...
متن کاملVoltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کاملElectrically driven single-photon source.
Electroluminescence from a single quantum dot within the intrinsic region of a p-i-n junction is shown to act as an electrically driven single-photon source. At low injection currents, the dot electroluminescence spectrum reveals a single sharp line due to exciton recombination, while another line due to the biexciton emerges at higher currents. The second-order correlation function of the diod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 123 7 شماره
صفحات -
تاریخ انتشار 2005